Supporting Information for

Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

Lixuan Tai1,3, #, Daming Zhu1, #, *, Xing Liu1, 2, #, Tieying Yang1, Lei Wang1, Rui Wang1, Sheng Jiang1, Zhenhua Chen1, Zhongmin Xu1, Xiaolong Li1, *

1Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China

2University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

3Department of Electronic Engineering, Tsinghua University, Beijing 100084, People’s Republic of China

#These authors contributed equally to this work.

*Corresponding authors. E-mail: zhudaming@sinap.ac.cn, lixiaolong@sinap.ac.cn

Figures

![Fig. S1 Sketch of the chemical vapor deposition (CVD) chamber. A well sealed cold-wall CVD chamber with a dedicated built-in heating platform was used for graphene growth](image)

Fig. S1 Sketch of the chemical vapor deposition (CVD) chamber. A well sealed cold-wall CVD chamber with a dedicated built-in heating platform was used for graphene growth
Fig. S2 XPS full scan of the as-grown sample

Fig. S3 SEM image of silicon surface after CVD growth at 950 °C. The flat surface of silicon has been destroyed
Fig. S4 Si 2p XPS line scan spectra of graphene growth at 935 °C. The interval between every point on the line is 40 μm

Fig. S5 Raman mapping of the intensity ratio (I_{2D}/I_G) for the sample growth at 905 °C. The laser-spot size was about 2 μm with a 473 nm wavelength. The Raman mapping of I_{2D}/I_G over large areas displays uniform distribution (mainly range from 0.9-1.4), implying that the sample is mainly composed of single layer or bilayer graphene domains, consistent with the AFM characterizations.