Fe$_2$O$_3$-Modified Porous BiVO$_4$ Nanoplates with Enhanced Photocatalytic Activity

Ping Cai · Shu-Mei Zhou · De-Kun Ma · Shen-Nan Liu · Wei Chen · Shao-Ming Huang

Received: 5 December 2014 / Accepted: 21 January 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract As BiVO$_4$ is one of the most popular visible-light-responding photocatalysts, it has been widely used for visible-light-driven water splitting and environmental purification. However, the typical photocatalytic activity of unmodified BiVO$_4$ for the degradation of organic pollutants is still not impressive. To address this limitation, we studied Fe$_2$O$_3$-modified porous BiVO$_4$ nanoplates. Compared with unmodified BiVO$_4$, the Fe$_2$O$_3$-modified porous BiVO$_4$ nanoplates showed significantly enhanced photocatalytic activities in decomposing both dye and colorless pollutant models, such as rhodamine B (RhB) and phenol, respectively. The pseudo-first-order reaction rate constants for the degradation of RhB and phenol on Fe$_2$O$_3$-modified BiVO$_4$ porous nanoplates are 27 and 31 times larger than that of pristine BiVO$_4$, respectively. We also found that the Fe$_2$O$_3$ may act as an efficient non-precious metal co-catalyst, which is responsible for the excellent photocatalytic activity of Fe$_2$O$_3$/BiVO$_4$.

Graphical Abstract Fe$_2$O$_3$, as a cheap and efficient co-catalyst, could greatly enhance the photocatalytic activity of BiVO$_4$ porous nanoplates in decomposing organic pollutants.

Keywords Fe$_2$O$_3$ · BiVO$_4$ · Nanostructures · Co-catalyst · Photocatalytic activity

1 Introduction

As BiVO$_4$ is one of the most popular visible-light-responding photocatalysts, it has attracted much attention since Kudo and co-authors first reported its photocatalytic activity in 1998 [1]. To improve the photocatalytic activity of BiVO$_4$, some typical strategies such as preparing monoclinic crystalline phase [2], obtaining large specific surface area and high-energy facets [3, 4], constructing special architectures [5, 6], and combining two or several above methods together have been developed [7].
However, until now, the photocatalytic activity of single-component BiVO₄ is still not ideal for practical application. The rational design of composite photocatalysts could extend the spectral responsive range and promote the separation of photogenerated carriers and thus would improve photocatalytic activity dramatically compared to their host single-component materials [8, 9]. Based on this strategy, we fabricated n–p core–shell BiVO₄@Bi₂O₃ and n–n Bi₂Sₓ/BiVO₄ composite microspheres previously [10, 11]. Although these composite materials showed better photocatalytic activity than the pure BiVO₄, their photocatalytic activity was still not impressive. The studies on photoelectrochemical water splitting of BiVO₄ as photoanodes have showed that BiVO₄ was poor catalyst for water oxidation. However, the appropriate modification of its surface with various oxygen evolution catalysts such as cobalt–phosphate, RhO₂, and Pt could greatly improve its performance [12, 13]. These findings suggest that rationally loading co-catalyst on the surface of BiVO₄ can improve its photocatalytic activity for the degradation of various organic pollutants. Recently, Li’s group reported that the photocatalytic activity of BiVO₄ in oxidizing thiophene could be significantly enhanced through the modification with Pt and RuO₂ co-catalysts [14]. Nevertheless, Pt and Ru are noble metals and expensive reagents. Therefore, it would be highly desirable if we can achieve the enhanced photocatalytic activity of BiVO₄ using earth-abundant elements instead of the rare and precious ones [15].

Fe₂O₃ consists of earth-abundant iron and oxygen elements and possesses the advantages of low cost, environmental friendliness and easy production, which has wide applications in many fields such as energy storage and conversion [16, 17], catalysis [18], sensing and biomedicine [19, 20]. As n-type semiconductor with a band gap of ca. 2.2 eV, Fe₂O₃ is also a potential visible-light-driven photocatalyst [21]. Nevertheless, the photocatalytic activity of unmodified Fe₂O₃ is poor because of its low carrier mobility, short minority carrier life time (ca. 10 ps) and diffusion length (ca. 2–4 nm) [22]. Therefore, there has been a lot of research focused on how to enhance photoelectrochemical and photocatalytic performance of Fe₂O₃ [23, 24]. On the other hand, the successful applications of Fe₂O₃ in many important organic catalytic reactions suggested that it had good catalytic reaction activity [18, 25]. However, to the best of our knowledge, Fe₂O₃ as a role of co-catalyst in photocatalytic system has never been reported until now.

On the other hand, the fabrication of porous two-dimensional (2D) nanostructures has drawn much interest because the porous 2D structure of these materials can increase materials’ surface area, facilitate the adsorption and diffusion of reactant molecules, and accelerate the transfer of photogenerated carriers from the interior to the surface of the material [26–28]. As a result, the photocatalysts with porous 2D nanostructures are expected to have good photocatalytic activity. Recently, Yu and co-authors have reported the synthesis of porous CuS/ZnS nanosheets with excellent photocatalytic activity through cation exchange reaction between performed inorganic–organic hybrid ZnS(en)ₓ ions and Cd²⁺ ions [29]. Similarly, nanoporous CdₓZn₁–ₓS nanosheets have been prepared through the cation exchange reaction of ZnS–amine nanosheets with cadmium ions [30]. However, the above-mentioned methods were limited in a few inorganic–organic hybrid 2D nanomaterials. Comparatively speaking, 2D metal complex nanostructures are more easily prepared through self-assembly of ligand at room temperature, which is driven by various non-covalent interactions including π–π stacking, van der Waals bonding, hydrophobic interactions, etc. [31–33]. Subsequently, 2D porous compounds nanostructures can be obtained by exchange reaction between ligands in 2D metal complexes nanostructures and anions in the desired compounds under certain conditions. However, this kind of ligand-anion exchange route to synthesize 2D porous nanostructured material has not, so far, been developed.

In this study, we present a new method for synthesizing porous BiVO₄ nanoplates via exchange reaction between ligand 1,4-benzene dicarboxylate (BDC) in 2D Bi₃(BDC)₃ nanoplates derived from direct self-assembly and VO₄³⁻ anions under hydrothermal condition, schematically shown in Fig. 1. Subsequently, Fe₂O₃-modified porous BiVO₄ nanoplates were obtained through a simple hydrothermal deposition–precipitation route. The as-obtained Fe₂O₃/BiVO₄ products displayed excellent photocatalytic activities for degrading both dye and colorless organic pollutants. Based on UV–Visible diffuse-reflectance spectra (DRS), photoluminescence (PL) spectra, and a series of comparative experiments, Fe₂O₃ as a role of non-precious metal co-catalyst in the present composite system was proposed.

2 Experimental Section

2.1 Preparation of Porous BiVO₄ Nanoplates

Bi₂(BDC)₃ nanoplates were prepared through our previous report [34]. For the preparation of porous BiVO₄ nanoplates, 0.1504 g of the as-obtained Bi₂(BDC)₃ and 0.0732 g of NaVO₃ were dispersed into 40 mL of ultrapure water under stirring. Then the solution was put into a Teflon® lined stainless steel autoclave with 50 mL of capability and heated at 180 °C for 10 h. After the autoclave was cooled to room temperature, the products were separated through centrifugation and washed three times with ultrapure water and absolute ethanol. Finally, the products were dried under vacuum at 60 °C for 4 h.
2.2 Preparation of Fe₂O₃-Modified BiVO₄ Porous Nanoplates

In a typical procedure, 0.4 mmol of porous BiVO₄ nanoplates, 1.0 mmol of NaOH, and different amounts of Fe(NO₃)₃ (0.008, 0.02, 0.04 mmol) were added into 40 mL of ultrapure water in sequence under stirring. After that, the solution was put into a Teflon-lined stainless steel autoclave with 50 mL of capability and heated at 160 °C for 12 h. After the autoclave was cooled to room temperature, the resultant products were separated via centrifugation and washed three times with ultrapure water and absolute ethanol, respectively. Finally, the products were dried under vacuum at 60 °C for 4 h.

2.3 Characterizations

Powder X-ray diffraction (XRD) patterns were carried out on a Bruker D8 Advanced X-ray diffractometer using Cu Kα radiation ($\lambda = 0.15418$ nm) at a scanning rate of 8°/min in the 2θ range of 10°–70°. X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Thermo ESCALAB 250 X-ray photoelectron spectrometer with an excitation source of Al Kα radiation ($\lambda = 1.253.6$ eV). Field emission scanning electron microscopy (FE-SEM) images and energy dispersed X-ray (EDX) spectra were taken on a Nova NanoSEM 200 scanning electron microscope. Transmission electron microscopy (TEM), EDX, high-resolution TEM (HRTEM) images and mapping images were taken on a JEOL 2010 microscope, using an accelerating voltage of 200 kV. The UV–Visible DRS were recorded on a UV2450 (Shimadzu) using BaSO₄ as reference. The PL spectra were recorded on a Fluoromax-4 spectrofluorometer (HORIBA Jobin Yvon Inc.) equipped with a 150 W xenon lamp as the excitation source.

2.4 Photocatalytic Properties

The photocatalytic activity of Fe₂O₃/BiVO₄ nanoplates was evaluated by the degradation of RhB and phenol under visible-light irradiation from 500 W Xe light (CHF-XM500, purchased from Beijing Trusttech Co., Ltd) equipped with a 400 nm cutoff filter, and water splitting using a 300 W Xe lamp and optical cutoff filter ($\lambda > 420$ nm). In a typical process, 100 mg of photocatalysts was added to 100 mL of rhodamine B (RhB) solution (10⁻⁵ mol L⁻¹). Before illumination, the solution was magnetically stirred in the dark for 12 h to ensure an adsorption–desorption equilibrium between the photocatalysts and RhB. After that, the solution was exposed to visible light irradiation under magnetic stirring. At given time intervals, 3 mL of solution was sampled and centrifuged to remove the photocatalyst particles. Then, the filtrates were analyzed by recording variations of the absorption band maximum (553 nm) in the UV–Vis spectra of RhB by using a Shimadzu UV2501PC spectrophotometer. The studies of photocatalytic activities for other samples adopted the same measurement process. For photocatalytic degradation of phenol, the initial concentration of phenol solution was 1×10^{-4} mol L⁻¹ and kept other conditions unchanged. After visible light irradiation of different period time, the centrifugated solution was analyzed by recording variations of the absorption band maximum (270 nm) of phenol in the UV–Vis spectra by using a Shimadzu UV2450 PC spectrophotometer. As to photocatalytic water splitting, 0.1 g of photocatalysts was dispersed in 150 mL of 0.02 M aqueous AgNO₃ solution in a Pyrex reaction cell and thoroughly degassed by evacuation in order to drive off the air inside. The amount of evolved O₂ was measured by an online gas chromatograph.

3 Results and Discussion

3.1 Crystal Structure, Compositions and Morphology

Figure 2a shows XRD pattern of the products obtained through the direct exchange reaction of BDC molecules in Bi₃(BDC)₃ with VO₄³⁻ anions under hydrothermal condition. All the diffraction peaks can be indexed to a monoclinic scheelite structure of BiVO₄ (JCPDS No.
known that the products consist of BiVO₄ and possible Fe₂O₃.

We chose Bi₂(BDC)₃ as precursor to synthesize BiVO₄ because the former was easily self-assembled into nanostructures through π−π stacking of benzene ring structure in BDC molecule at room temperature. Moreover, the flexible BDC ligand was helpful to alleviate the strain caused by crystal lattice mismatch between Bi₂(BDC)₃ and BiVO₄ and maintain the framework of nanoplate during chemical conversion process. Figure 4a represents a typical FE-SEM image of the as-obtained Bi₂(BDC)₃ precursor, which shows that the sample is nanosheets with average size of 100 nm in thickness, 500 nm in width, and 1.5 μm in length. After chemical transformation, Bi₂(BDC)₃ nanoplates were converted into porous BiVO₄ nanosheets (Fig. 4b). These pores are linked together and distributed throughout the whole nanosheets. Magnified FE-SEM image shows that there are some tiny nanoparticles on the surfaces of the products obtained through hydrothermal deposition−precipitation route (Fig. S2). Further insight morphology and the microstructure of the products can be obtained from TEM and HRTEM images. In agreement with FE-SEM observations, TEM also shows that the products are porous nanosheets. Careful analyses show that there are some aggregates of tiny particles (marked with white arrowhead) closely integrating with the surfaces of nanosheets. Figure 4d represents HRTEM image recorded on the white rectangular area in Fig. 4c. The fringe spacing of 0.362 and 0.312 nm in the HRTEM image corresponds to the interplanar separation of (110) and (103) planes of monoclinic BiVO₄, respectively. The HRTEM image of the products displays the fringe spacing of 0.221 nm, which is consistent with the interplanar spacing of (113) plane of Bi₂O₃. The EDX spectroscopy recorded on a single nanoplate shows that the sample consists of Bi, V, Fe, Cu, O and C elements (Fig. 4f). The Cu and C elements come from copper grid coated carbon for sample support. Bi, V, Fe and O elements correspond to BiVO₄ and Fe₂O₃. The EDX spectrum further supports the results of HRTEM. The mapping images of an individual Fe₂O₃/BiVO₄ porous nanoplate show that Fe₂O₃ nanoparticles scattered unequally on the surfaces of porous BiVO₄ nanosheets (Fig. S3). The quantitative calculation on the EDX spectrum recorded on SEM (Fig. S4) shows that the content of Fe₂O₃ in the sample is ca. 3.8 mol %. All the above results indicate that the as-obtained products are Fe₂O₃-modified BiVO₄ porous nanosheets.

3.2 Photocatalytic Properties

The photocatalytic activities of the as-obtained Fe₂O₃/BiVO₄ porous nanosheets were evaluated by the degradation of RhB and phenol, common pollutant models as dye...
and colorless organic compounds, respectively, in water under visible light irradiation (λ > 400 nm). As shown in Fig. 5a, the photodegradation efficiency of RhB over Fe₂O₃/BiVO₄ is near 100 % within 80 min under visible light irradiation. However, RhB is stable and has a negligible degradation in the absence of any photocatalysts under visible light irradiation [37]. The photocatalytic activity of Fe₂O₃/BiVO₄ is significantly superior to pristine BiVO₄ and Bi₂O₃/BiVO₄ as well. Considering most of the photocatalytic reactions follow a pseudo-first-order kinetic equation: ln(C₀/C) = kt (where C₀ and C are the equilibrium concentration of adsorption and the concentration of RhB at the irradiation time t, respectively, and k is the apparent rate constant), the plots of ln(C₀/C) versus t were performed. The ln(C₀/C) versus t displays a linear relationship (Fig. 5b), which shows that the photodegradation of RhB on these photocatalysts obeys the rules of first-order reaction kinetics. From the fitting results, the apparent reaction rate constants are 0.0013, 0.0057, and 0.0358 min⁻¹ for pristine BiVO₄, Bi₂O₃/BiVO₄, and Fe₂O₃/BiVO₄, respectively. As a result, the photocatalytic reaction rate of Fe₂O₃/BiVO₄ is 27 and 6 times larger than that of pristine BiVO₄ and Bi₂O₃/BiVO₄, respectively. Fe₂O₃/BiVO₄ also displayed excellent photocatalytic activity for degrading colorless phenol. As shown in Fig. 5c, the photocatalytic activity of BiVO₄ was greatly enhanced after the modification of Fe₂O₃, which was in good agreement with the results of photocatalytic decomposition of RhB. The apparent reaction rate constants are 0.0006, 0.0009, and 0.019 min⁻¹ for BiVO₄, Bi₂O₃/BiVO₄, and Fe₂O₃/BiVO₄, respectively. As a result, the photocatalytic reaction rate of Fe₂O₃/BiVO₄ is 31 and 21 times larger than that of unmodified BiVO₄ and Bi₂O₃/BiVO₄, respectively. Whether the pollutant model is RhB or phenol, the amount of Fe₂O₃ in the products has obvious influence on photocatalytic activity of Fe₂O₃/BiVO₄. When too lower or too higher concentration of Fe(NO₃)₃ was used, less or more Fe₂O₃ was produced. It was found that the photocatalytic activity of Fe₂O₃/BiVO₄ would decline in both cases. However, all the composites show higher photocatalytic activity than pure BiVO₄. Therefore, finely adjusting the content of Fe₂O₃ will further improve the photocatalytic activity of Fe₂O₃/BiVO₄. In addition, Fe₂O₃-modified BiVO₄ porous nanoplates show good reusability (Fig. 6). After five times cycles for the photocatalytic degradation of RhB and phenol, the sample did not exhibit obvious loss of photocatalytic activity.
3.3 The Role of Fe$_2$O$_3$ and Photocatalysis Mechanism

The doping of Fe$^{3+}$ ions in the lattice of some photocatalysts or its graft on the surfaces of certain photocatalysts would enhance the photocatalytic activities of the photocatalysts [38, 39]. In order to survey whether the enhancement of photocatalytic activity of BiVO$_4$ stems from the doping or grafting effect of Fe$^{3+}$ ions, the control experiment without using NaOH was carried out. The photocatalytic activities of the resultant products have no obvious change for the decomposition of RhB (Fig. 5a), compared with pristine BiVO$_4$. The result shows that the doping and grafting of Fe$^{3+}$ ions were not main reasons for the enhanced photocatalytic activity of Fe$_2$O$_3$/BiVO$_4$.

Previous studies indicated that single-component Fe$_2$O$_3$ nanocrystals showed poor and negligible photocatalytic activity for the degradation of RhB and phenol under visible light irradiation [40, 41], respectively. To further understand the role of Fe$_2$O$_3$ in the composite material, Fe$_2$O$_3$ nanorods were synthesized through modified method (Supporting Information, Fig. S5 and Fig. S6) [40]. As shown in Fig. 5a and c, only a small quantity (<25 %) of RhB molecules were degraded on Fe$_2$O$_3$ nanorods within 90 min while almost no detectable decomposition was observed for phenol. It was observed that the size of Fe$_2$O$_3$ is very small in Fe$_2$O$_3$/BiVO$_4$ composites. In order to

![Fig. 4 FE-SEM images of a Bi$_2$(BDC)$_3$ and b BiVO$_4$. c TEM image of Fe$_2$O$_3$-modified BiVO$_4$. HRTEM images recorded on the places marked with white rectangular area d and white arrowhead e in Fig. 4c. f EDX spectrum performed on a single nanoplate](image-url)
exclude the possibility of nanosize effect of Fe$_2$O$_3$ for the enhanced photocatalytic activity, ultrasmall Fe$_2$O$_3$ nanoparticles supported by SiO$_2$ nanospheres were synthesized and their photocatalytic activities were evaluated by the degradation of phenol (Fig. S7–S9). As shown in Fig. S9, Fe$_2$O$_3$/SiO$_2$ showed very poor photocatalytic activity as well. The above results further indicate that Fe$_2$O$_3$ itself has very weak photocatalytic activity, which cannot
account for the excellent photocatalytic activity in the present Fe$_2$O$_3$/BiVO$_4$ system.

The photocatalytic activity of the composite photocatalysts in decomposing organic pollutant is closely related to their adsorption capability, light energy utilization, separation efficiency of photogenerated carriers, and surface catalytic performance [42–45]. Fe$_2$O$_3$/BiVO$_4$ and pristine BiVO$_4$ have similar adsorption behavior to both RhB and phenol (Fig. 7a, b). The introduction of Fe$_2$O$_3$ and Bi$_2$O$_3$ do not noticeably improve adsorption ability of BiVO$_4$ to the organic pollutants (Fig. S10). Figure 7c represents UV–Vis DRS of Fe$_2$O$_3$/BiVO$_4$ and pristine BiVO$_4$. There are no obvious differences between them except that Fe$_2$O$_3$/BiVO$_4$ displays slightly higher absorption in both UV and visible light region than BiVO$_4$, which is possibly attributed to larger absorption coefficient of Fe$_2$O$_3$ (ca. 105 cm$^{-1}$) than that of BiVO$_4$ and its narrower band gap (2.2 eV) [46]. As we know, PL spectra can be used as an efficient means to evaluate the separation efficiency of the photogenerated carriers [11]. Figure 7d displays the room temperature PL emission spectra (excited at $\lambda = 400$ nm) of pure BiVO$_4$, 0.008 Fe$_2$O$_3$/BiVO$_4$, 0.02 Fe$_2$O$_3$/BiVO$_4$, and 0.04 Fe$_2$O$_3$/BiVO$_4$ under visible light irradiation ($\lambda > 420$ nm).

![Figure 7](image_url)

Fig. 7 The adsorption behavior of a RhB and b phenol on BiVO$_4$ and Fe$_2$O$_3$/BiVO$_4$. c UV–Vis DRS of pristine BiVO$_4$, Fe$_2$O$_3$/BiVO$_4$ and Co$_3$O$_4$/BiVO$_4$. d PL spectra of BiVO$_4$ and Fe$_2$O$_3$/BiVO$_4$ excited at $\lambda = 400$ nm at room temperature. e The oxygen evolution rate of pure BiVO$_4$, 0.008 Fe$_2$O$_3$/BiVO$_4$, 0.02 Fe$_2$O$_3$/BiVO$_4$, and 0.04 Fe$_2$O$_3$/BiVO$_4$ under visible light irradiation ($\lambda > 420$ nm).
the photogenerated electrons and holes are efficiently separated. In order to further understand how photogenerated electron and hole migrate, the photocatalytic activities for water splitting of pure BiVO$_4$, 0.008Fe$_2$O$_3$/BiVO$_4$, 0.02Fe$_2$O$_3$/BiVO$_4$, and 0.04Fe$_2$O$_3$/BiVO$_4$ were comparatively studied. The amount of O$_2$ evolved in the first hour was evaluated. As shown in Fig. 7e, the photocatalytic O$_2$ evolution activities of the samples gradually decline with increasing content of Fe$_2$O$_3$ and pure BiVO$_4$ possesses the best performance. The results suggest that photogenerated holes not electrons were transferred to the surfaces of Fe$_2$O$_3$. Otherwise, more O$_2$ will be produced on Fe$_2$O$_3$/BiVO$_4$ because the composite material can more efficiently separate photogenerated carriers than pure BiVO$_4$. Fe$_2$O$_3$/BiVO$_4$ showed lower photocatalytic water splitting activity than pure BiVO$_4$ because Fe$_2$O$_3$ had lower oxidation potential than BiVO$_4$. When photogenerated holes were transferred to the surfaces of Fe$_2$O$_3$, their water oxidation performance correspondingly weakened. The tradeoff between the separation of carriers and decreased oxidation potential leads to declined photocatalytic water splitting performance of Fe$_2$O$_3$/BiVO$_4$. Therefore, Fe$_2$O$_3$ can act as a hole scavenger and efficiently separates photogenerated carriers.

It is known that noble metals can act as co-catalysts on the surfaces of photocatalysts, which can greatly enhance the surface catalytic activity of the materials. Recent studies showed that some non-precious metal such as MoS$_2$, graphene, and cobalt phosphate could serve as co-catalysts like noble metal as well [47-49]. In this study, the loading of small amounts of Fe$_2$O$_3$ also enhanced surface catalytic activity of BiVO$_4$. To further support the role of a co-catalyst of Fe$_2$O$_3$ in our system, we compared the photocatalytic activity of Fe$_2$O$_3$/BiVO$_4$ and Co$_3$O$_4$/BiVO$_4$ in degrading phenol. Co$_3$O$_4$/BiVO$_4$ was prepared following reported procedures [50], where Co$_3$O$_4$/BiVO$_4$ possessed excellent photocatalytic activity for degrading phenol. As shown in Fig. 8, the photocatalytic activity of the present Fe$_2$O$_3$/BiVO$_4$ greatly surpassed that of Co$_3$O$_4$/BiVO$_4$. The photocatalytic reaction rate constant of the former (1.9 \times 10$^{-2}$ min$^{-1}$) is six times larger than that of the latter (3 \times 10$^{-3}$ min$^{-1}$). Compared with Fe$_2$O$_3$/BiVO$_4$, Co$_3$O$_4$/BiVO$_4$ shows much larger and wider absorption in both UV and visible light region, as shown in Fig. 7c. PL spectrum indicates that the emission intensity of BiVO$_4$ was greatly reduced after the loading of Co$_3$O$_4$ (Fig. S11), which showed that photogenerated carriers were efficiently separated in Co$_3$O$_4$/BiVO$_4$ system as well. In addition, Co$_3$O$_4$/BiVO$_4$ and Fe$_2$O$_3$/BiVO$_4$ has similar adsorption ability to phenol (Fig. S12). Considering all above facts, it can be understood that higher surface catalytic activity of Fe$_2$O$_3$/BiVO$_4$ lead to its higher catalytic activity than Co$_3$O$_4$/BiVO$_4$. Specifically, Fe$_2$O$_3$ played a key role as co-catalyst for enhanced photocatalytic activity of Fe$_2$O$_3$/BiVO$_4$ due to its low content, efficient separation of photogenerated carriers and good surface catalytic activity. It should be highlighted here that the photocatalytic activity of the as-obtained Fe$_2$O$_3$/BiVO$_4$ is among one of the best photocatalysts reported to date, and is superior to noble metal Pt loaded the same porous BiVO$_4$ nanoplates (Only 40 % of phenol was degraded under the same conditions, Fig. S13).

4 Conclusions

In conclusion, Fe$_2$O$_3$/BiVO$_4$ nanoplates with porous structures have been prepared through a mild chemical conversion and subsequently hydrothermal deposition–precipitation routes. The as-prepared Fe$_2$O$_3$/BiVO$_4$ showed excellent photocatalytic activity in degrading both RhB and phenol. After the modification of Fe$_2$O$_3$, the photocatalytic activity of pristine BiVO$_4$ could be increased more than one order of magnitude. It is believed that Fe$_2$O$_3$ acts as an
efficient co-catalyst, which contributes to the excellent photocatalytic activity of Fe2O3/BiVO4 porous nanoplates. The facile preparation method, low cost of raw materials, excellent photocatalytic activity, and good reusability of the Fe2O3/BiVO4 porous nanoplates make the material a promising photocatalyst for the application in the field of environmental remedy.

Acknowledgments The authors would like to express acknowledge for partial financial support from NSFC (51372173, 5102107), and 21173159), NSFC for Distinguished Young Scholars (51025207), Research Climb Plan of ZJED (pd2013383), Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201409SIC), Xinniao talent project of Zhejiang Province (2013R424060), and College Students Research Project of Wenzhou University (14xk193).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Nano-Micro Lett.